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1.  Petascale Science is an End-to-end Problem 
Petascale science is an end-to-end endeavor, involving not only the creation of massive datasets at 
supercomputers or experimental facilities, but the subsequent analysis of that data by a user 
community that may be distributed across many laboratories and universities. The new Center for 
Enabling Distributed Petascale Science (CEDPS) supported by the US Department of Energy’s 
Scientific Discovery through Advanced Computing (SciDAC) program is developing tools to support 
this end-to-end process. In this brief article, we summarize the goals of the project and its progress to 
date. Some material is adapted from a longer article that appeared in the 2007 SciDAC conference 
proceedings [7]. 

At a recent workshop on computational science, the chair noted in his introductory remarks that if 
the speed of airplanes had increased by the same factor as computers over the last 50 years, namely 
five orders of magnitude, then we would be able to cross the US in less than a second. This analogy 
communicates with great effectiveness the remarkable impact of continued exponential growth in 
computational performance, which along with comparable improvements in solution methods is 
arguably the foundation for SciDAC. 

However, a participant was heard to exclaim following these remarks: “yes—but it would still take 
two hours to get downtown!” The serious point that this speaker was making is that science is an end-
to-end problem and that accelerating just one single aspect of the problem solving process can 
inevitably achieve only limited returns in terms of increased scientific productivity.  

These concerns become particularly important as we enter the era of petascale science, by which 
we mean science involving numerical simulations performed on supercomputers capable of a 
petaflop/sec or higher performance, and/or experimental apparatus—such as the Large Hadron 
Collider [4], light sources and other user facilities [1], and ITER [3]—capable of producing petabytes 
of data. Successful science using such devices demands not only that we be able to construct and 
operate the simulation or experiment, but also that a distributed community of participants be able to 
access, analyze, and ultimately make sense of the resulting massive datasets. In the absence of 
appropriate solutions to the end-to-end problem, the utility of these unique apparatus can be severely 
compromised. 

The following example illustrates issues that can arise in such contexts. A team at the University of 
Chicago recently used the FLASH3 code to perform the world’s largest compressible homogeneous 
isotropic turbulence simulation [15]. Using 11 million CPU-hours on the LLNL BG/L computer over a 
period of a week, they produced a total of 154 terabytes of data, contained in 75 million files which 
subsequently were archived. Subsequently, they used GridFTP to move 23 terabytes of this data to 
computers at the University of Chicago; using four parallel streams, this took some three weeks at 
around 20 megabyte/sec. Next, they spent considerable time using local resources to tag the data, 
analyze, and visualize the data, augmenting the metadata as well. In a final step, they are making this 
unique dataset available for use by the community of turbulence researchers by providing analysis 
services so that other researchers can securely download portions of the data for their own use. In each 



 
 
 
 
 
 

of these steps, they were ultimately successful—but they would be the first to argue that the effort 
required to achieve their end-to-end goals of scientific publications and publicly available datasets was 
excessive. 

As this example illustrates, a complete solution to the end-to-end problem may require not only 
methods for parallel petascale simulation and high-performance parallel I/O (both handled by the 
FLASH3 code and associated parallel libraries), but also efficient and reliable methods for: 

• high-speed reliable data placement, to transfer data from its site of creation to other 
locations for subsequent analysis; 

• terascale or faster local data analysis, to enable exploration of data that has been fetched 
locally; 

• high-performance visualization, to enable perusal of selected subsets and features of large 
datasets data prior to download; 

• troubleshooting the complex end-to-end system, which due to its myriad hardware and 
software components can fail in a wide range of often hard-to-diagnose ways; 

• building and operating scalable services [17], so that many users can request analyses of 
data without having to download large subsets [this aspect of the project is not addressed in 
this article]; 

• securing the end-to-end system, in a manner that prevents (and/or can detect) intrusions 
and other attacks, without preventing the high-performance data movement and 
collaborative access that is essential to petascale science; and 

• orchestrating these various activities, so that they can be performed routinely and 
repeatedly. 

Each of these requirements can be a significant challenge when working at the petascale. Thus, a 
new SciDAC Center for Enabling Technology, the Center for Enabling Distributed Petascale Science 
(CEDPS) was recently established to support the work of any SciDAC program that involves the 
creation, movement, and/or analysis of large amounts of data, with a focus on data placement, scalable 
services, and troubleshooting. 

2.  Current Data Placement Approaches 
Large quantities of data must frequently be moved among computers in a petascale computing 
environment, whether because there are insufficient resources to perform analysis on the platform that 
generated the data, because analysis requires specialized resources or involves comparison with other 
data, or because the data must be published, that is, moved and augmented with metadata, to facilitate 
use by the community.  

Our data placement work addresses three classes of application requirements. First, staging to and 
from active computations and workflows requires placement of data at advantageous locations. By 
using a data placement service to perform staging operations asynchronously with respect to a 
workflow or execution engine, rather than explicitly staging data at run time, we hope to demonstrate 
improved application performance, as suggested in simulations [20] and initial measurements of 
workflow execution [11]. A current example of where these methods can be applied is the 
visualization of the results of a combustion simulation at NERSC which produces 100 TB of data. 
Smarter placement of the data during simulation execution will enable better use of the visualization 
component and let scientists understand the resulting data in a more timely fashion. 

Second, archival storage is often the final location of data products that are staged out of a running 
application, and better data placement services can make archiving operations more efficient. When an 
application runs on a compute resource such as a cluster or supercomputer, data products must often 
be staged off the storage system associated with that computational resource onto more permanent 
secondary or archival storage. These staging out operations can limit application performance, 
particularly if the compute resource is storage-limited; using an asynchronous data placement service 
to stage out data products should improve performance. For example, the team running the CCSM 
climate simulation code at ORNL wants to publish its output data to the Earth System Grid (ESG) [9]. 



 
 
 
 
 
 

They must both transfer the output data to an HPSS archive at NERSC (perhaps while the model is 
running) and also register each file in a metadata catalog for ESG. 

Finally, we are interested in data placement services that maintain required levels of redundancy in 
a distributed environment. For example, it might be the policy of the data placement service to ensure 
that there are always three copies of every data item stored in the system. If the number of replicas of 
any data item falls below this threshold, the placement service is responsible for creating additional 
replicas to meet this requirement. An example of where this requirement arises in practice is the data 
produced by the CMS experiment at the LHC (at a sustained rate of 400 MB/s), which must be 
delivered to a Tier 1 site in the US for further processing and then distribution among several US 
domestic and 20 non-US Tier-2 sites.  

Such scenarios, for which we can give many other examples across a wide range of applications, 
can involve many of the following six elements: 

1. Data registration and metadata tagging as well as data movement; 
2. Bulk data transfer over high-speed long-haul networks from different sources and sinks; 
3. Coordinated data movement across multiple sources, destinations, and intermediate locations, 

including parallel file systems, virtual disks, and hierarchical storage, and among multiple 
users and applications; 

4. Failure reduction techniques, such as storage reservation and data replication; 
5. Failure detection techniques including online monitoring and operation retry to detect and 

recover from multiple failure modalities; and 
6. A need for predictability and coordinated scheduling in spite of variations in load and 

competing use of storage space, bandwidth to the storage system, and network bandwidth. 
To summarize the motivation for CEDPS in a sentence: not only must we be able to transfer data 

and manage end-point storage systems and resource managers; we must also be able to support the 
coordinated orchestration of data across many community resources.  

Currently available tools address portions of this functionality. Basic high-performance data 
transfer (2) is supported by GridFTP [6], which provides fast performance through parallelism and 
stripping between data sources. The Replica Location Service and associated Globus data services 
[10] can provide basic ways to look up where a replica is stored, but metadata tagging (1) is generally 
an application-specific tool. The NeST [8] and dCache [21] storage management services provide 
disk-side support for data placement and some of the reliability and error prevention required (4), but 
not the broader coordinated data movement (3) needed by today’s applications. Failure detection (5) 
and performance prediction (6) are considered open areas of research by many. In general, these 
requirements go well beyond our current data transfer and storage resource management capabilities. 
We will discuss the ways in which our new technology addresses these six elements in the following 
sections. 

3.  The CEDPS Managed Object Placement Service: MOPS 
We are creating a new class of data placement services that can position data reliably across diverse 
systems and coordinate provisioning, movement, and registration across multiple storage systems to 
enable efficient and prioritized access by many users. A single logical transfer may involve multiple 
sources and destinations necessitating the use of intermediate store and forward storage systems or the 
creation of optimized overlay networks such as user level multicast networks. Concurrent independent 
placement operations may be prioritized and monitored in case of failures. 

As a first step, we have recently released a prototype Managed Object Placement Service (MOPS), 
shown in Figure 1, which transforms storage into a managed resource. MOPS allows users to negotiate 
access to a certain quantity of storage for a certain time and with defined performance characteristics. 
Its design and implementation leverages GridFTP, NeST, and dCache. 

GridFTP[8] provides a flexible core architecture with a data interface component that allows 
different plug-ins for added functionality. It is well known for its high-speed data transfer capabilities. 



 
 
 
 
 
 

GridFTP gives MOPS the core functionality of fast, bulk file transfers, element 2 in our scenarios, 
which MOPS extends through its plug-in capability 
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Figure 1: General MOPS architecture. 

 
NeST [8] provides guaranteed storage allocation by allowing the user and storage device to 

negotiate a size and duration and to specify access control lists (ACLs) for file access. In this way a 
system can specify which users can access certain files or sets of files and also work with disk 
reservations when they are available. This feature helps address element 3, coordinated data 
movement, and element 4, failure reduction, by decreasing the chance of disk overflow errors.  

dCache [22] provides methods for managing backend (tertiary) storage systems including space 
management, hot spot determination, and recovery from disk or node failures. When connected to a 
tertiary storage system, dCache simulates unlimited direct access storage space; data exchanges to and 
from the underlying tertiary storage system are performed automatically and invisibly to the user. 
Recent CEDPS-funded work has implemented data transfer consistency verification features for 
verifying that individual transfers have completed correctly. dCache also addresses element 3, 
coordinated data movement, and element 4, failure reduction.  

By combining these three tools with a single user interface using MOPS, CEDPS users can now 
work with their data in a more managed environment, especially in terms of reducing failures due to 
running out of disk space in the middle of a transfer, limiting the access to a set of files, or verifying 
that a transfer has completed successfully, while continuing to serve the data quickly across a wide 
variety of networks and back-end storage systems. 

4.  The CEDPS Data Placement Service  
CEDPS is also developing the Data Placement Service (DPS) that will perform data transfer 
operations using MOPS. For data-intensive scientific applications running in a distributed 
environment, the placement of data onto storage systems can have a significant impact on the 
performance of scientific computations and on the reliability and availability of data sets. These 
scientific applications may produce and consume terabytes or petabytes of data stored in millions of 
files or objects, and they may run complex computational workflows consisting of millions of 
interdependent tasks. A variety of data placement algorithms could be used, depending on the 
requirements of a scheduler or workflow management system as well as the data distribution goals of 
the scientific collaboration, or Virtual Organization (VO). For example, a placement algorithm might 



 
 
 
 
 
 

distribute data in a way that is advantageous for application or workflow execution by placing data 
sets near high-performance computing resources so that they can be staged into computations 
efficiently; by moving data off computational resources quickly when computation is complete; and 
by replicating data sets for performance and reliability. These goals might be considered policies of 
the workflow manager or VO, and a policy-driven data placement service is responsible for replicating 
and distributing data items in conformance with these policies or preferences. A data placement 
service could also make use of hints from a workflow management system about applications and their 
access patterns, for example, whether a set of files is likely to be accessed together and therefore 
should be replicated together on storage systems.  

To demonstrate the effectiveness of intelligent data placement, we integrated the Pegasus workflow 
management system [14] from USC Information Sciences Institute with the Globus Data Replication 
Service [13], which provides efficient replication and registration of data sets. We demonstrated [11] 
that using hints from the workflow management system allowed us to reduce the execution time of 
scientific workflows when we were able to successfully prestage necessary data onto appropriate 
computational resources.  

This initial work has led us to design a general, asynchronous Data Placement Service (DPS) that 
will operate on behalf of a virtual organization and accept data placement requests requests from 
clients that reflect, for example, grouping of files, order of file requests, etc. Figure 2 illustrates the 
operation of a DPS for stage in requests issued by a workflow management system. We also plan to 
incorporate configurable policies into the data placement service that reflect the data distribution 
policies of a particular VO. Our goal is to produce a placement service that manages the competing 
demands of VO data distribution policies, data staging requests from multiple competing workflows, 
and additional on-demand data requests from other clients.  
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Figure 2: Shows a workflow management system acting as a client of a data placement service and issuing 
requests for staging in of data sets. The DPS issues MOPS data transfers from appropriate storage 
elements to the compute cluster(s) on which workflow execution will take place.  

 
We have implemented an initial version of the data placement service with a planned software 

release in October 2007. This implementation modifies and significantly extends the existing Globus 
Data Replication Service. The implementation uses several Globus components, including the Java 
WS Core that provides the basic infrastructure for supporting web service deployment and generic 
operation support such as basic state management, query operations, endpoint references, etc.; the 
Globus Replica Location Service that provides registration and discovery of of data items; the 
GridFTP data transfer service for secure and efficient data staging operations; and the Grid Security 
Infrastructure for secure access to resources in the distributed environment. 



 
 
 
 
 
 

5.  CEDPS Troubleshooting 
Distributed data management involves end-to-end systems comprising of many different hardware and 
software components in different physical locations and administrative domains. Failures can occur 
and they can be hard to diagnose. Experience with current DOE distributed system deployments has 
shown that understanding behavior is a fundamental requirement, not just a desirable enhancement. 
Middleware may also mask performance faults, when applications produce correct results but 
experience degradation in performance. 

In order to better understand failures and to increase the reliability of the end-to end system we 
have developed tools to allow easer access to los and additional log analysis software that performance 
anomaly detection. In addition, we have also deployed a higher-level monitoring tool that observes 
services and generates notifications when errors occur.  

Figure 3 shows the CEDPS log management service based on the syslog-ng system [5]. We mine 
software and service logs (such as those from GridFTP, MOPS, or other tools) which are filtered and 
forwarded to a common location. That combined set of data can then be analyzed. We have used 
NetLogger [22] to access performance data and discover faulty event chains where expected behavior 
does not occur. We have also developed prototypes of anomaly detection tools that can detect a 
missing event in an event stream and also identify unexpected performance variations which indicate 
an underlying problem that may not cause an out right failure [12]. This system is currently in the 
process of being deployed on the Open Science Grid (OSG) [19]. 

  

 
Figure 3: Syslog-ng deployment architecture, and interactions with anomaly detection and alarm tools. 

 
Both of these tools have been aided by effort spent on improving the quality and consistency of 

available performance information. Specifically, we have codified a set of logging “Best Practices” 
[2], and are modifying the Globus Toolkit [16] to follow these practices. In defining these guidelines, 
we have worked with the European EGEE project to achieve compatibility with their security logging 
guidelines [18], an important requirement for LHC computing. 

To compliment our log services and to assist further with our scenario elements 5 and 6, failure 
reduction and detection, we have also developed a Trigger service [12] that runs small probes and 
notifies system administrators and end users when certain conditions are met. These can include a 
service failure or failure to respond to a ping, or a warning condition, such as a nearly full disk, overly 



 
 
 
 
 
 

long queue, or high load condition on a resource. The Trigger service has been used by ESG for over 
three years for system failure notifications and to help diagnose errors. We have re-architected this 
component to allow for additional trigger services, a separation of matching conditions and actions 
taken upon failure notification, and easier deployment through a Web interface. 

These tools combine to give us additional support in the end-to-end data management environment. 

6.  Revisiting the FLASH Example 
We began this article with a discussion of the University of Chicago FLASH application experiment, 
in which it took three weeks at 20 MB/s to transfer less than 15% of the data produced in a three-week 
simulation. By using MOPS, it is possible that smarter disk allocation could have been done, allowing 
the FLASH group to transfer data of particular interest more quickly and as it was being generated due 
to smarter handling of the backend storage system. When performing local analysis and replication of 
the data, the FLASH team could now take advantage of the DPS which would handle registering new 
files and distributing them according to the policy defined by the FLASH team, instead of having to 
do this work by hand. In addition, with the added centralized logging and trigger service deployed at 
the various sites, FLASH scientists would be able to detect any failures and debug any performance 
problems much more easily than the current environment. The effort required to achieve their end-to-
end goals of scientific publications and publicly available datasets would be significantly reduced 
overall. 

7.  Summary 
We have introduced the SciDAC Center for Enabling Distributed Petascale Science (CEDPS), which 
is addressing three problems critical to enabling the distributed management and analysis of petascale 
datasets: data placement, scalable services, and troubleshooting. 

In data placement, we are developing tools and techniques for reliable, high-performance, secure, 
and policy driven placement of data within a distributed science environment. We are constructing a 
managed object placement service (MOPS)—a significant enhancement to today’s GridFTP—that 
allows for management of the space, bandwidth, connections, and other resources needed to transfer 
data to and/or from a storage system. Building on this base, we are developing end-to-end data 
placement services that implement different data distribution and replication behaviors. 

In troubleshooting, we are developing tools for the detection and diagnosis of failures in end-to-
end data placement and distributed application hosting configurations. We are constructing an end-to-
end monitoring architecture that uses instrumented services to provide detailed data for both 
background collection and run-time event-driven collection. We are also constructing new monitoring 
analysis tools able to detect failures and performance anomalies and predict system behaviors using 
archived data and event logs. 

These tools allow scientists to interact more easily with large data sets created during petascale 
computations, and allow faster end analysis of the data. More details can be found at www.cedps.net. 
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